直感によって確率を偏向させることの危険性

定量的測定と感情的印象

鮮明さ - ボールがネットに入る想像

言い回し - 言葉選びの重要性

まれな事象の過小評価

直感によって確率を偏向させることの危険性

お気に入りのチームに賭けるのは、なぜまずいのでしょうか。これは宝くじがものすごい人気を博していながら、人々はホールインワンのような珍しい事象の確率を判断するのは難しいと思っているのと、同じ理由からと考えられます。つまり、可能性効果と確実性効果と呼ばれるものから認知のゆがみが生じているのです。

多くのベッターは、期待値(EV)からベットのバリューを計算するのではなく、獲得可能なリターンについて思いを巡らせます。例として、100万を獲得するチャンスが以下のように上昇すると想定して、その重要性を評価してみましょう。

下の選択肢は、すべて量的に同じ変化(5%の上昇)を表していますが、質的には違う印象を受けます。別な言い方をすると、それぞれの選択肢から生じる感情的な反応が異なります。以下の画像をご覧ください。

possibility-certainty-insert.jpg

選択肢(a)では、100万を獲得するチャンスがない状態から、チャンスがある状態に変わります。わずかな差(0.05の可能性)ではありますが、可能性があるという領域に踏み込むことは、プラスの感情を呼ぶ大きなトリガーとなります。この感覚は「可能性の効果」と呼ばれるもので、一般的にギャンブラーが大穴を過剰に重視するのはこれが要因です。また、少しの出費で大金獲得の可能性がある宝くじ購入の原動力でもあります。

選択肢(b)と(c)からは、傾向として、それほど劇的な印象を受けません。選択肢(b)の場合、実は可能性が倍増しているのですが、それでも質的なインパクトはなく、先ほどと同じ心のボタンを押すには至りません。

選択肢(d)では、結果が確実(100%)になり、可能性の効果とは逆の効果が生じます。これは「確実性効果」と呼ばれるものです。EV計算を行わないとき、確実に近いが確実ではない結果は、一般的に、その可能性の割に軽視されるというものです。

鮮明さ – ボールがネットに入る想像

確率に重み付けをすることにはメリットがあるにも関わらず、それでもベッターは、優れたバリューを計算した結果よりも、そちらの方が起こりそうだという理由から、チームBではなくチームAへのベットを決める傾向があります。

これに加え、結果について鮮明に感情的な描写が浮かぶものを対象とすると、結果を評価する際に、客観的に確率を用いる場合が少なくなることが研究で明らかとなっています。つまり、ベットを表現する言葉選びには、特定の焦点が必要なのです。

宝くじの例に絡めるなら、「宝くじに当たったらどうする?」という理想の話をしたことがない人などいないでしょう。これが、起こりそうもない結果を鮮やかに空想している例です。こうした空想によって必然的に、ジャックポット獲得の可能性を高く見ることになります。

まったく同じ理由で、お気に入りのチームやプレイヤーにベットするのは良い考えではありません。自分の思い入れで理想的な結果(ボールがゴールに入るという想像)をより鮮明に思い描き、可能性を高く見てしまうからです。

言い回し – 言葉選びの重要性

あるベットが明確な用語で表現されている場合、推定でも明示的な算定でも、期待値を計算しやすくなり、その結果、重み付けが実際の確率に近くなったり一致したりします。ただし、ベットを表す細かな言い回しの差によって、解釈に違いが生じる可能性があります。

「ベッティングにおける黄金律の1つは、あらゆるベットは期待値の観点から評価されなければならないということ」

例えば、アウトライト市場は、「プレイヤーA対その他の参加者」と表すことも、プレイヤーAを含む参加者全員の長いリスト(プレイヤーA:3.201、プレイヤーB:9.454、Player C:11.232、など)として表すこともできます。

最初の言い回しは、プレイヤーAのタスクが極端に単純化された表現であるため、これにより、成功の可能性を実際より高く認識することになります。2番目の言い回しでは、確率はまったく同一であるにも関わらず、単にプレイヤーAが打ち負かすべき対戦相手がリスト化されているというだけで、より見通しが悲観的であるように感じられます。これにより、可能性を低く見てしまいます。

注目は感情と同じくらい重要

同様に、注目も可能性を見誤る大きな要因です。以下のベットは、よくある形式です。

「チームAは得点するか?」
「はい」に賭ける/「いいえ」に賭ける
“チームBは得点するか?”
「はい」に賭ける/「いいえ」に賭ける

それぞれの事象に個別に注目していると、ベッターの判断は過剰に高くなります。これは、以下のように2つの質問を組み合わせた場合とは対照的です。

「チームAとチームBの両方が得点するか?」
「はい」に賭ける/「いいえ」に賭ける

Craig Foxと心理学者の故Amos Tverskyは、1999年にある研究で次のことを明確に実証しました。彼らは、アメリカのバスケットボールファンのグループに、NBAプレイオフ準決勝に出場する8チームそれぞれについて優勝の可能性を評価してもらいました。

正確に計算するためのリソースがない状態で評価すると、確率は過剰に低くなりました。

1度に1チームの可能性だけを評価することに集中した場合は、NBAファンはそれぞれのチームについて鮮明な印象を描いたため、8チームの結果の確率を足し合わせると240%という大幅な過剰評価になりました。もちろん、確率の合計は100%のはずです。

単にEastern ConferenceとWestern Conferenceのどちらかが勝つか可能性を評価してもらった場合には、確率は100%に非常に近くなりました。これは、選択肢が2つの場合はあまり感情的な反応が起こらず、具体性も同程度であったためです。

まれな事象と過小評価 – ホールインワンギャング

1991年、2人の賭博師がベッティングで有名な大成功を収めました。2人は「ホールインワンギャング」として知られるようになりましたが、彼らのやったことで、まれな事象を想像することの難しさ、正しく計算するためのリソースなしに評価を行うといかに可能性を過小評価することになるかが浮き彫りになりました。

この2人は、統計を徹底的に分析し、European Golf Tourでホールインワンが発生する可能性は、オッズにしておよそ2.25であると算出しました。この知識を武器に、彼らは国内を巡り、独立系ブックメーカーに狙いを付け、ホールインワンがゴルフトーナメントのテレビ放送に記録される場合のオッズ提供するよう求めました。こうした小規模なブックメーカーは、リスク評価に精通する者がいなかったので空算、つまり直感的な判断に頼りました。

ブックメーカーは、ホールインワンはまれな事象であると考えました。個人的な体験(ゴルフをプレイする人の場合)でも、テレビでも、ホールインワンはほとんど経験がなかったからです。テレビは放映範囲が限られるため、すべてのティーショットが放送される保証はありませんでした。その結果、相場はオッズ4.00から最大101.00という幅になりました。これは、まれな事象が過小評価されることを示す絶好の例となりました。

ベッティングにおける黄金律の1つは、あらゆるベットは期待値の観点から、つまり確率によって重み付けされたそれぞれの結果の平均から評価されなければならないということです。

残念ながら、ベッターはベットの選択肢の発生確率について、自分がどう感じるかを基準に重み付けを行う傾向があります。その結果、可能性効果と確実性効果が生じるのですが、これが非常に高くつく可能性があるのです。

この記事をお楽しみいただけたなら、Pinnacleのベッティング心理学に関する記事もお勧めします。

ベッティングリソース - あなたのベッティングをパワーアップ

オンライン最高クラスの充実度を誇るピナクルのベッティングリソースでは、専門家によるベッティングのアドバイスをご覧いただけます。ベッティング経験の長さを問わず、ベッターの皆様がパワーアップできる知識をお伝えすることが目的です。