tammi 22, 2015
tammi 22, 2015

Miten keskihajontaa voi käyttää vedonlyönnissä

Miten keskihajontaa voi käyttää vedonlyönnissä
Tiedätkö, että vedonlyöjä voi käyttää keskihajontaa vedonlyönnin lopputuloksen ennustamiseen? Ota selvää, mitä keskihajonta tarkoittaa, miten se lasketaan ja miten sitä käytetään vedonlyönnissä.

Aikaisemmassa artikkelissa selitettiin, miksi vedonlyöjän ei kannata luottaa pelkästään keskiarvoon, sillä siihen vaikuttavat vieraat havainnot, eikä se pysty näyttämään hajontaa pelkästään numeroina. 

Hajontaa voidaan mitata monin eri tavoin, joista yksi on keskihajonta – suure, joka ilmaisee, miten paljon ryhmän arvo poikkeaa ryhmän keskiarvosta. Eri mittareita käytetään joko suoraan tai parametreina funktiossa tai jakaumassa.

Poissonin jakauma vs. Normaalijakauma

Vedonlyöjät käyttävät joskus Poissonin jakaumaa ennustaakseen, miten monta maalia kukin joukkue tekee jalkapallo-ottelussa. Tämä jakauma käyttää kuitenkin vain yhtä parametria, eli keskiarvoa, ja se on diskreetti jakauma eli sen arvojoukko on luonnollisten lukujen joukko.

Poissonin jakaumalla voidaan ennustaa, millä todennäköisyydellä tehdään maali sen sijaan, että sillä ennustettaisiin, millä todennäköisyydellä maali syntyy 25. ja 30. minuutin välillä (vaikka jakaumaa voidaan laajentaa myös tämän laskemiseen).

Normaalijakauma, eli Gaussin jakauma tai Gaussin kellokäyrä , on myös suosittu. Tämä malli eroaa Poissonin jakaumasta monilla tavoin, mutta yksi eroista on, että kyseessä on jatkuva todennäköisyysjakauma, joka perustuu kahteen parametriin: keskiarvoon ja keskihajontaan.

Maalihajonnan ennustaminen Valioliigassa

Käytetään esimerkkinä maalieroja jalkapallopelissä. Näyttää siltä, että maaliero peliä kohden on normaalijakautunut. Maaliero on kotijoukkueen tekemien maalien määrän ja vierasjoukkueen tekemien maalien määrän erotus, jossa nolla tarkoittaa tasapeliä.

Katsotaan Valioliigan kauden 2013/14 tietoja:

  • Manchester City saavutti suurimman kotivoiton voittaessa Norwichin 7-0.
  • Liverpoolin 5-0 voitto Tottenhamia vastaan oli isoin vierasvoitto.
  • Maalierotuksen keskiarvo oli 0,3789 (mediaani & moodi = 0)
  • Keskihajonta oli 1,9188.

Tiedoista voidaan vetää useita johtopäätöksiä. Pääsääntöisesti suosituin maaliero on tasapeli, ja jakauma on lähes symmetrinen, suosien hieman kotivoittoa. Tämä artikkeli keskittyy kuitenkin keskihajontaan.

Keskihajonnan laskeminen

Normaalijakauma käyttää kahta parametria (keskiarvoa ja keskihajontaa) luodakseen standardisoidun käyrän. Tässä noin 68 % jakaumasta on yhden standardijakauman sisällä keskiarvosta ja 95 % on kahden standardijakauman sisällä.

Tässä tapauksessa odotus on, että 68 % peleistä päättyy -1,5399 ja 2,2977 maalin välille (eli 0,3789 + 1,9188). Käyrän jatkuvalla ominaisuudella on myös rajoituksensa: -1,5399 maalin ero ei ole mahdollinen.

Että voidaan arvioida kotivoitto 1 maalin erolla, 1 voidaan muuttaa diskreetistä (kokonais-) luvusta, jonka arvo on 1, edustamaan jatkuvaa joukkoa välillä 0,5 ja 1,5. Jokaiselle arvolle voidaan sitten laskea sen erotus keskiarvosta keskihajonnan mukaan.

article-how-to-use-standard-deviation-betting-graph.jpg

Hieno puoli tässä on, että voimme nyt uudelleenmallintaa normaalijakauman näytetyllä tavalla. Tässä tapauksessa on löydettävä oranssilla värillä merkitty alue.

Sinisellä merkitty alue, joka näyttää alle yhden maalin (tai sen jatkuvan vastineen alle 0,5 maalin) todennäköisyyden, on 52,15 %.

Vaikka emme tässä syvennykään siihen, miten tämä lasketaan, voi laskun suorittaa tavallisimmilla taulukkolaskuohjelmilla (MS Excel: =NORM.DIST(0.5,0.3789, 1.9188,1). Samalla tavoin alle 1,5 maalin todennäköisyys on 72,05 %. Näin voimme odottaa, että näiden kahden arvon väli on 19,53 %.

Näin ollen voimme arvioida, että 380 ottelusta 74,22 peliä päättyy kotijoukkueen voittoon yhden maalin erolla. Todellisuudessa näin kävi 75 pelissä, joten arvio oli hyvin tarkka.

Toistamalla laskutoimituksen kaikille maalieroille, voimme verrata oikeaa ja arvioitua määrää pelejä, jotka päättyivät eri maalieroilla.

Alla oleva taulukko näyttää, että epäjohdonmukaisuus on minimaalista ja normaalijakauma on hyvin yhteensopiva (on olemassa tapoja testata normaaliutta, ja tämä jakauma sopii hyvin Valioliigan 2013/14 tietoihin).

article-how-to-use-standard-deviation-betting-graph-2.png

Oletetaan nyt, että jakauma pitää paikkaansa tämän hetkisellä Valioliigan kaudella. Jos aiot pelata tasoitusvetoja, saatat haluta tietää, mikä on todennäköisyys sille, että kotijoukkue voittaa yhdellä tai useammalla maalilla Valioliigassa. Tämä on siis sama kuin 1 - 52,52 %, eli 47,48 %.

Tämä on tietenkin yleinen arvio ja koskee vain Valioliigaa yleisesti eikä yksittäisiä joukkueita vedonlyöjän kannattaa laskea yksittäisten joukkueiden todennäköisyydet eikä koko liigan todennäköisyyksiä.

Yhteenvetona voidaan sanoa, että keskihajonta ei ole pelkästään hajonnan mittari, jossa suurempi arvo kertoo suuremmasta hajonnasta ryhmän sisällä. e on myös tärkeä mittari todennäköisyyksien laskennassa, mikä on erittäin hyödyllistä vedonlyöjille. Tulevassa artikkelissa keskitytään siihen, miten eri keskihajonta voi vaikuttaa todennäköisyyksiin ja hajontaan.

Vedonlyöntiresurssit auttavat vedonlyönnissä

Pinnaclen Vedonlyöntiresurssit-osio on yksi netin kattavimmista asiantuntevan vedonlyöntineuvonnan kokoelmista. Tavoitteenamme on auttaa kaikentasoisia vedonlyöjiä parantamaan tietämystään.